Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.353
1.
BMC Genomics ; 25(1): 407, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664635

BACKGROUND: Unraveling the intricate and tightly regulated process of adipogenesis, involving coordinated activation of transcription factors and signaling pathways, is essential for addressing obesity and related metabolic disorders. The molecular pathways recruited by mesenchymal stem cells (MSCs) during adipogenesis are also dependent on the different sources of the cells and genetic backgrounds of donors, which contribute to the functional heterogeneity of the stem cells and consequently affect the developmental features and fate of the cells. METHODS: In this study, the alteration of transcripts during differentiation of synovial mesenchymal stem cells (SMSCs) derived from fibrous synovium (FS) and adipose synovial tissue (FP) of two pig breeds differing in growth performance (German Landrace (DL)) and fat deposition (Angeln Saddleback (AS)) was investigated. SMSCs from both tissues and breeds were stimulated to differentiate into adipocytes in vitro and sampled at four time points (day 1, day 4, day 7 and day 14) to obtain transcriptomic data. RESULTS: We observed numerous signaling pathways related to the cell cycle, cell division, cell migration, or cell proliferation during early stages of adipogenesis. As the differentiation process progresses, cells begin to accumulate intracellular lipid droplets and changes in gene expression patterns in particular of adipocyte-specific markers occur. PI3K-Akt signaling and metabolic pathways changed most during adipogenesis, while p53 signaling and ferroptosis were affected late in adipogenesis. When comparing MSCs from FS and FP, only a limited number of differentially expressed genes (DEGs) and enriched signaling pathways were identified. Metabolic pathways, including fat, energy or amino acid metabolism, were highly enriched in the AS breed SMSCs compared to those of the DL breed, especially at day 7 of adipogenesis, suggesting retention of the characteristic metabolic features of their original source, demonstrating donor memory in culture. In contrast, the DL SMSCs were more enriched in immune signaling pathways. CONCLUSIONS: Our study has provided important insights into the dynamics of adipogenesis and revealed metabolic shifts in SMSCs associated with different cell sources and genetic backgrounds of donors. This emphasises the critical role of metabolic and genetic factors as important indications and criteria for donor stem cell selection.


Adipogenesis , Mesenchymal Stem Cells , Animals , Adipogenesis/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Swine , Signal Transduction , Cell Differentiation , Gene Expression Profiling , Transcriptome , Synovial Membrane/metabolism , Synovial Membrane/cytology , Adipocytes/metabolism , Adipocytes/cytology , Cells, Cultured , Breeding
2.
Int Immunopharmacol ; 115: 109654, 2023 Feb.
Article En | MEDLINE | ID: mdl-36621328

Rheumatoid arthritis (RA) primarily affecting the synovial tissue, has emerged as a major concern leading to the pressing need to develop effective treatment strategies. In the affected synovial tissue, resident macrophages play a pivotal role in the pathogenesis of RA. TNF-α and IL-1ß released from pro-inflammatory M1 synovial macrophages are the master regulators of chronic joint inflammation. In this study collagen-induced rheumatoid arthritis model was developed in mice and post isolation, macrophages were subjected to administration with neutralizing antibodies IL1R and TNFR1 either alone or in combination. Flow cytometric analysis followed by Western blots, ROS, and IL-1ß, TNF-α release assays were performed. Outcomes suggested that post-dual blockade of IL1R and TNFR1 arthritic synovial macrophages showed a shifting of the M1 towards the anti-inflammatory M2 phenotype. Moreover, the switch towards the M2 phenotype might be responsible for decreased levels of IL-1ß,TNF-α, and ROS and simultaneous elevation in the activity of antioxidant enzymes like SOD, CAT, and GPX content in the isolated macrophages. Simultaneous blocking of both IL1R and TNFR1 also showed a sharp reduction in the expression of NF-κB and SAPK-JNK. The elevated arginase and GRX activity further confirmed the polarization towards M2. Moreover, bioinformatics analysis was performed,and it was found that blocking TNFR1 with an antibody could hamper the binding of TNF to TNFR1 in the TNF-TNFR1 pathway. Thus, it may be inferred that dual blockade of IL1R and TNFR1 and a suitable antibody blocking of TNFR1 might be alternative therapeutic approaches for the regulation of RA-induced inflammation in the future.


Arthritis, Rheumatoid , Receptors, Tumor Necrosis Factor, Type I , Animals , Mice , Antibodies/pharmacology , Inflammation/metabolism , Macrophages , Reactive Oxygen Species/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Synovial Membrane/cytology , Synovial Membrane/metabolism , Receptors, Interleukin-1/metabolism
3.
Dis Markers ; 2022: 5114697, 2022.
Article En | MEDLINE | ID: mdl-35186167

OBJECTIVES: Synovial fibroblasts (SFs) play an important role in the development and progression of rheumatoid arthritis (RA). However, the pathogenic mechanism of SFs remains unclear. The objective of this study was to investigate how neuropeptides and N6-methyladenosine (m6A) played an important role in the underlying pathogenic processes of SFs that contribute to the development of RA. METHODS: Single-cell RNA sequencing data were examined using single-cell analysis and machine learning. SF subgroups were identified based on the clustering and annotation results of the single-cell analysis. Moreover, cell-cell communication was used to analyse neuropeptide-related receptor and ligand pairs on the surface of SF cell membranes. Machine learning was used to explore the m6A factors acting on these neuropeptide genes. RESULTS: NPR3, GHR, BDKRB2, and CALCRL, four neuropeptide genes, were shown to be differently expressed among SF subgroups. Further investigation of receptor-ligand interactions found that NPR3 (in conjunction with NPPC, OSTN, NPPB, and NPPA) and GHR (in conjunction with GH1 and GH2) may have a role in SF interactions. As predicted by machine learning, IGFBP2 and METTL3 were identified as key factors regulating m6A of NPR3 and GHR. The expression levels and enrichment pathways of METTL3 and IGFBP2 were different among SF subgroups. CONCLUSIONS: Single-cell analysis and machine learning efficiently identified neuropeptide genes and m6A factors that perform important regulatory functions in RA. Our strategy may provide a basis for future studies to identify pathogenic cell subpopulations and molecular mechanisms in RA and other diseases.


Adenosine/analogs & derivatives , Arthritis, Rheumatoid/genetics , Fibroblasts , Machine Learning , Neuropeptides/genetics , Single-Cell Analysis , Synovial Membrane/cytology , Adenosine/physiology , Humans
4.
PLoS One ; 17(2): e0263254, 2022.
Article En | MEDLINE | ID: mdl-35148358

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammatory bone destruction in which tumor necrosis factor alpha (TNF-α) plays a key role. Bovine lactoferrin (bLF) is a multifunctional protein with anti-inflammatory and immunomodulatory properties. This study aimed to clarify the inhibitory effects of bLF on the pathological progression of RA. The mannan-induced arthritis model in SKG mice (genetic RA model) was used. Orally applied liposomal bLF (LbLF) markedly reduced ankle joint swelling and bone destruction. Histologically, pannus formation and osteoclastic bone destruction were prevented in the LbLF-treated animals. Moreover, orally administered LbLF improved the balance between Th17 cells and regulatory T cells isolated from the spleen of mannan-treated SKG mice. In an in vitro study, the anti-inflammatory effects of bLF on TNF-α-induced TNF-α production and downstream signaling pathways were analyzed in human synovial fibroblasts from RA patients (RASFs). bLF suppressed TNF-α production from RASFs by inhibiting the nuclear factor kappa B and mitogen-activated protein kinase pathways. The intracellular accumulation of bLF in RASFs increased in an applied bLF dose-dependent manner. Knockdown of the lipoprotein receptor-related protein-1 (LRP1) siRNA gene reduced bLF expression in RASFs, indicating that exogenously applied bLF was mainly internalized through LRP-1. Immunoprecipitated proteins with anti-TNF receptor-associated factor 2 (TRAF2; an adapter protein/ubiquitin ligase) included bLF, indicating that bLF binds directly to the TRAF2-TRADD-RIP complex. This indicates that LbLF may effectively prevent the pathological progression of RA by suppressing TNF-α production by binding to the TRAF2-TRADD-RIP complex from the RASFs in the pannus. Therefore, supplemental administration of LbLF may have a beneficial effect on preventive/therapeutic reagents for RA.


Arthritis, Rheumatoid/drug therapy , Lactoferrin/administration & dosage , Osteogenesis/drug effects , Synovial Membrane/cytology , Tumor Necrosis Factor-alpha/adverse effects , Administration, Oral , Animals , Arthritis, Rheumatoid/metabolism , Disease Models, Animal , Disease Progression , Female , Humans , Lactoferrin/pharmacology , Male , Mice , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Th17 Cells/metabolism
5.
Nat Commun ; 13(1): 676, 2022 02 03.
Article En | MEDLINE | ID: mdl-35115492

Ferroptosis is a nonapoptotic cell death process that requires cellular iron and the accumulation of lipid peroxides. In progressive rheumatoid arthritis (RA), synovial fibroblasts proliferate abnormally in the presence of reactive oxygen species (ROS) and elevated lipid oxidation. Here we show, using a collagen-induced arthritis (CIA) mouse model, that imidazole ketone erastin (IKE), a ferroptosis inducer, decreases fibroblast numbers in the synovium. Data from single-cell RNA sequencing further identify two groups of fibroblasts that have distinct susceptibility to IKE-induced ferroptosis, with the ferroptosis-resistant fibroblasts associated with an increased TNF-related transcriptome. Mechanistically, TNF signaling promotes cystine uptake and biosynthesis of glutathione (GSH) to protect fibroblasts from ferroptosis. Lastly, low dose IKE together with etanercept, a TNF antagonist, induce ferroptosis in fibroblasts and attenuate arthritis progression in the CIA model. Our results thus imply that the combination of TNF inhibitors and ferroptosis inducers may serve as a potential candidate for RA therapy.


Arthritis, Experimental/prevention & control , Arthritis, Rheumatoid/prevention & control , Ferroptosis/drug effects , Fibroblasts/drug effects , Imidazoles/pharmacology , Ketones/pharmacology , Piperazines/pharmacology , Tumor Necrosis Factor Inhibitors/pharmacology , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Disease Models, Animal , Drug Therapy, Combination , Etanercept/pharmacology , Etanercept/therapeutic use , Fibroblasts/cytology , Fibroblasts/metabolism , Glutathione/metabolism , Humans , Imidazoles/therapeutic use , Ketones/therapeutic use , Lipid Peroxidation/drug effects , Mice , Piperazines/therapeutic use , Reactive Oxygen Species/metabolism , Synovial Membrane/cytology , Tumor Necrosis Factor Inhibitors/therapeutic use
6.
BMC Vet Res ; 18(1): 53, 2022 Jan 22.
Article En | MEDLINE | ID: mdl-35065631

BACKGROUND: Medical interventions for subchondral bone cysts in horses have been extensively studied. This study investigated the regeneration of articular cartilage and subchondral bone with scaffold-free three-dimensional (3D) constructs of equine synovial membrane-derived mesenchymal stem cells (SM-MSCs) isolated from three ponies and expanded until over 1.0 × 107 cells at passage 2 (P2). RESULTS: SM-MSCs were strongly positive for CD11a/CD18, CD44, and major histocompatibility complex (MHC) class I; moderately positive for CD90, CD105, and MHC class II; and negative for CD34 and CD45 on flow cytometry and differentiated into osteogenic, chondrogenic, and adipogenic lineages in the tri-lineage differentiation assay. After culturing SM-MSCs until P3, we prepared a construct (diameter, 6.3 mm; height, 5.0 mm) comprising approximately 1920 spheroids containing 3.0 × 104 cells each. This construct was confirmed to be positive for type I collagen and negative for type II collagen, Alcian blue, and Safranin-O upon histological analysis and was subsequently implanted into an osteochondral defect (diameter, 6.8 mm; depth, 5.0 mm) at the right femoral medial condyle. The contralateral (left femoral) defect served as the control. At 3 and 6 months after surgery, the radiolucent volume (RV, mm3) of the defects was calculated based on multiplanar reconstruction of computed tomography (CT) images. Magnetic resonance (MR) images were evaluated using a modified two-dimensional MR observation of cartilage repair tissue (MOCART) grading system, while macroscopic (gross) and microscopic histological characteristics were scored according to the International Cartilage Repair Society (ICRS) scale. Compared to the control sites, the implanted defects showed lower RV percentages, better total MOCART scores, higher average gross scores, and higher average histological scores. CONCLUSIONS: Implantation of a scaffold-free 3D-construct of SM-MSCs into an osteochondral defect could regenerate the original structure of the cartilage and subchondral bone over 6 months post-surgery in horses, indicating the potential of this technique in treating equine subchondral bone cysts.


Bone Cysts , Cartilage, Articular , Horse Diseases , Mesenchymal Stem Cells , Regeneration , Animals , Bone Cysts/veterinary , Femur , Horses , Synovial Membrane/cytology , Tissue Scaffolds
7.
Lab Invest ; 102(1): 102-111, 2022 01.
Article En | MEDLINE | ID: mdl-34718343

The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family includes nine members with aggrecan-degrading activity, i.e., ADAMTS1, 4, 5, 8, 9, 15, 16, 18, and 20. However, their systematic expression profile in knee osteoarthritis (OA) synovium and effects of cytokines and growth factors on the expression in OA synovial fibroblasts remain elusive. In this study, expression of all nine aggrecanolytic ADAMTS species was assessed by quantitative real-time PCR in OA and control normal synovial tissues. OA synovial fibroblasts were treated with interleukin-1α (IL-1α), IL-1ß, tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß), vascular endothelial growth factor165, and heparin-binding epidermal growth factor, and analyzed for the expression of the ADAMTS species. The signaling pathways and inhibition of ADAMTS4 expression by high-molecular-weight hyaluronan, adalimumab, tocilizumab, and signaling molecule inhibitors were studied. ADAMTS1, 4, 5, 9, and 16 were expressed in OA synovium, but only ADAMTS4 expression was significantly higher in OA as compared to normal synovium. IL-1α, TNF-α, and TGF-ß markedly increased ADAMTS4 expression, while their effects were minimal for the other ADAMTS species. ADAMTS4 was synergistically upregulated by treatment with IL-1α and TNF-α, IL-1α and TGF-ß, or IL-1α, TNF-α and TGF-ß. The signaling molecules' inhibitors demonstrated that IL-1α-induced ADAMTS4 expression is predominantly through TGF-ß-associated kinase 1 (TAK1), and the TNF-α-stimulated expression is via TAK1 and nuclear factor-κB (NF-κB). The TGF-ß-promoted expression was through the activin receptor-like kinase 5 (ALK5)/Smad2/3, TAK1, and non-TAK1 pathways. Adalimumab blocked TNF-α-stimulated expression. ADAMTS4 expression co-stimulated with IL-1α, TNF-α and TGF-ß was abolished by treatment with adalimumab, TAK1 inhibitor, and ALK5/Smad2/3 inhibitor. These data demonstrate marked and synergistic upregulation of ADAMTS4 by IL-1α, TNF-α and TGF-ß in OA synovial fibroblasts, and suggest that concurrent therapy with an anti-TNF-α drug and inhibitor(s) may be useful for prevention against aggrecan degradation in OA.


ADAMTS4 Protein/genetics , Cytokines/pharmacology , Fibroblasts/drug effects , Osteoarthritis, Knee/metabolism , Synovial Membrane/metabolism , Up-Regulation/drug effects , ADAMTS4 Protein/metabolism , Cells, Cultured , Drug Synergism , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Humans , Interleukin-1/pharmacology , Isoenzymes/genetics , Isoenzymes/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Synovial Membrane/cytology , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Vascular Endothelial Growth Factor A/pharmacology
8.
J Pharmacol Sci ; 148(1): 116-124, 2022 Jan.
Article En | MEDLINE | ID: mdl-34924115

Rheumatoid arthritis (RA) is an autoimmune disease with increased M1 macrophages. The classical activated M1 macrophages produce various cytokines to control inflammation. Wilforlide A is a natural product that displays anti-inflammatory activities. However, the effect of Wilforlide A on RA progression and the potential mechanisms are unclear. Herein, the collagen-induced arthritis (CIA) mouse was used as an experimental model of RA. The administration of Wilforlide A reduced clinical scores, joint swelling and histological damage in ankle joints of RA mice. The secreted pro-inflammatory factors (MCP1, GM-CSF and M-CSF) and M1 biomarker iNOS in synovium were inhibited by Wilforlide A. In vitro, macrophages deriving from THP-1 cells were stimulated with LPS/IFN-γ to mimic M1 polarization. Similarly, Wilforlide A blocked macrophages polarizing towards M1 subsets. The in vitro results demonstrated that Wilforlide A suppressed LPS/IFN-γ-induced TLR4 upregulation, IκBα degradation and NF-κB p65 activation. In addition, TAK242 (a TLR4 inhibitor) treatment caused a similar inhibitory effect on M1 polarization with Wilforlide A, whereas it was less than the combination of TAK242 and Wilforlide A. Therefore, this work supports that Wilforlide A ameliorates M1 macrophage polarization in RA, which is partially mediated by TLR4/NF-κB signaling pathway inactivation.


Arthritis, Rheumatoid/drug therapy , Cell Polarity/drug effects , Macrophage Activation/drug effects , Macrophages/physiology , Oleanolic Acid/analogs & derivatives , Phytotherapy , Animals , Anti-Inflammatory Agents , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Inflammation Mediators/metabolism , Macrophages/classification , Macrophages/metabolism , Male , Mice, Inbred DBA , NF-kappa B/metabolism , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Signal Transduction/drug effects , Signal Transduction/genetics , Synovial Membrane/cytology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Toll-Like Receptor 4/metabolism
9.
Mol Immunol ; 142: 83-94, 2022 02.
Article En | MEDLINE | ID: mdl-34971867

Rheumatoid arthritis (RA) synovium was identified as "tumor-like" tissues because of the hypoxic microenvironment, significant cell proliferation, and invasion phenotypes. It was reported that hypoxia promoted tumor aggressiveness via up-regulated expression of fascin-1 in cancer. However, the role of fascin-1 in RA synovial hyperplasia and joint injury progression remains unknown. In the current study, we first identified that both fascin-1 and HIF-1α were highly expressed in the RA synovium, in which they were widely colocalized, compared to osteoarthritis(OA). As well, levels of fascin-1 in RA fibroblast-like synoviocytes(FLSs) were found significantly higher than those in OA FLSs. Further, it was demonstrated that the mRNA and protein levels of fascin-1 in RA FLSs were up-regulated in hypoxia (3 % O2) and experimental hypoxia induced by cobalt chloride. Mechanistically, the HIF-1α-mediated hypoxia environment activated the gene expression of the fascin-1 protein, which in turn promoted the migration and invasion of RA FLSs. Accordingly, the restoration of FLSs migration and invasion was observed following siRNA-mediated silencing of fascin-1 and HIF-1α expression. Notably, under the experimental hypoxia, we found that the expression levels of fascin-1, HIF-1α, and p-STAT3 were increased in a time-dependent manner, and fascin-1and HIF-1α expressions were dependent on p-STAT3. Our results indicated that hypoxia-induced fascin-1 up-regulation promoted RA FLSs migration and invasion through the STAT3/HIF-1α/fascin-1 axis, which might represent a novel therapeutic target for the treatment of RA.


Arthritis, Rheumatoid/pathology , Carrier Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Microfilament Proteins/metabolism , STAT3 Transcription Factor/metabolism , Synovial Membrane/pathology , Synoviocytes/pathology , Carrier Proteins/genetics , Cell Hypoxia/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Cells, Cultured , Humans , Hyperplasia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Joints/injuries , Microfilament Proteins/genetics , Osteoarthritis/pathology , RNA Interference , RNA, Small Interfering/genetics , STAT3 Transcription Factor/genetics , Synovial Membrane/cytology
10.
Osteoarthritis Cartilage ; 30(3): 406-415, 2022 03.
Article En | MEDLINE | ID: mdl-34861384

Osteoarthritis is the most common form of joint disease and is one of the leading causes of chronic pain. Given the multi-factorial nature, numerous efforts have been made to clarify the multiple factors impacting the pain symptoms and joint pathology, including synovial macrophages in particular. Accumulating evidence from studies involving human participants and experimental animal models suggests that accumulating macrophages in synovial tissue are implicated in peripherally mediated pain sensitization of affected joints in osteoarthritis. Crosstalk between synovial macrophages and the innervating primary nociceptive neurons is thought to contribute to this facilitated pain processing by the peripheral nervous system. Due to high plasticity and complexity of synovial macrophages in the joint, safe therapies targeting single cells or molecules are currently lacking. Using advanced technologies (such as single-cell RNA sequencing and mass cytometry), studies have shown that diverse subpopulations of synovial macrophages exist in the distinct synovial microenvironments of specific osteoarthritis subtypes. Considerable progress has been made in delineating the molecular mechanisms of various subsets of synovial macrophages in the development of osteoarthritis. To develop a novel intra-articular treatment paradigm targeting synovial macrophages, we have summarized in this review the recent advances in identifying the functional consequences of synovial macrophage sub-populations and understanding of the molecular mechanisms driving macrophage-mediated remodeling.


Arthralgia/pathology , Macrophages/physiology , Osteoarthritis/pathology , Synovial Membrane/cytology , Animals , Arthralgia/therapy , Humans , Osteoarthritis/therapy
11.
Rheumatology (Oxford) ; 61(3): 913-925, 2022 03 02.
Article En | MEDLINE | ID: mdl-34559213

Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.


Arthritis, Rheumatoid/pathology , Synovial Membrane/cytology , B-Lymphocytes/physiology , Cell Communication/physiology , Endothelial Cells/physiology , Fibroblasts/physiology , Genetic Heterogeneity , Granulocytes/physiology , Humans , Macrophages/physiology , Peripheral Nervous System/cytology , Phagocytes/physiology , Signal Transduction/physiology , Single-Cell Analysis , T-Lymphocytes/physiology , Transcriptome
12.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article En | MEDLINE | ID: mdl-34884768

Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.


Cartilage, Articular/growth & development , Cartilage, Articular/injuries , Cell- and Tissue-Based Therapy/methods , Osteoarthritis/pathology , Regeneration/physiology , Acute-Phase Proteins/metabolism , Animals , Cells, Cultured , Fetus/physiology , Macrophages/cytology , Mesenchymal Stem Cells/metabolism , Neutrophils/cytology , Sheep , Synovial Membrane/cytology , Synovial Membrane/injuries , Synovial Membrane/metabolism
13.
Int Immunopharmacol ; 101(Pt B): 108352, 2021 Dec.
Article En | MEDLINE | ID: mdl-34836794

BACKGROUND: Mangiferin (MF) is a bioactive ingredient predominantly isolated from the mango tree, that has been reported to have antioxidant, anti-inflammatory, and immunomodulatory effects. This study was aimed to investigate the protective effect of MF on the joints of arthritic rats and explore the underlying mechanisms of this function. METHODS: Adjuvant-induced arthritis (AA) rat model was established and clinical severity of AA was evaluated by arthritis index, paw edema, plasma, and synovium homogenate parameters. The severity of joint destruction was assessed by radiological and histopathological. Immunohistochemical analysis was employed to detect the protein expression of MMP-3, MMP-13 in synovium and cartilage tissues. The vitro effects of MF on proliferation, migration, apoptosis, and production of inflammatory mediators in RA- FLSs were determined by the CCK8 assay, transwell assay, flow cytometry, and real-time PCR, respectively. RESULTS: The results demonstrated that MF treatment significantly alleviated arthritis index, paw swelling and decreased the secretion of inflammatory cytokines in plasma and synovium. Meanwhile, MF inhibited synovial inflammation, pannus formation, and bone erosion in AA rats. It also ameliorated the oxidative stress state of arthritic rats via modulating the level of MDA, SOD, CAT, GSH, NO. In addition, MF effectively attenuated the destructive behavior of RA-FLSs by inhibiting proliferation, migration, and secretion of inflammatory mediators, and promoting apoptosis. The further mechanistic analysis demonstrated that MF might exert an antiarthritic effect via inhibiting the pathway of MAPKs (ERK2 and p38) and NF-κ B. CONCLUSION: Taken together, our results demonstrated that MF would be a promising anti-arthritic agent candidate for further research.


Arthritis, Experimental/drug therapy , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Xanthones/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Apoptosis/drug effects , Arthritis, Rheumatoid/metabolism , Cell Movement/drug effects , Cells, Cultured , Fibroblasts/physiology , Freund's Adjuvant/toxicity , Humans , Male , Molecular Structure , NF-kappa B/genetics , Random Allocation , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species , Synovial Membrane/cytology , Synovial Membrane/drug effects , Xanthones/chemistry
14.
Int Immunopharmacol ; 101(Pt A): 108321, 2021 Dec.
Article En | MEDLINE | ID: mdl-34741869

BACKGROUND AND PURPOSE: Panaxynol (PAL, PubChem CID: 5281149) is a common natural minor component in Umbelliferae plants, such as Radix Saposhnikoviae Divaricatae. Modern pharmacology studies show that PAL has nutritional value and anti-inflammatory and other pharmaceutical activities. Therefore, the scientific hypothesis of PAL in the treatment of rheumatoid arthritis was put forward, and the hypothesis was further verified by Fibroblast-like synovial cells (RA-FLS) and Collagen Induced Arthritis (CIA) rats models. EXPERIMENTAL METHOD: CIA method was used to establish a rat arthritis model. After extracting RA-FLS, flow cytometry and immunofluorescence were used to explore the effect of PAL on the apoptosis and proliferation of RA-FLS. Wound healing and transwell experiment explored the effect of PAL on the migration and invasion of RA-FLS. Western blot analysis explored the inner mechanism of the effect of PAL on RA-FLS. At the same time, it also explored the role of PAL in CIA rats, including pathological section detection and western blot analysis. MAIN RESULTS: PAL can promote the apoptosis and inhibit the proliferation, migration and invasion of RA-FLS. PAL can also reduce joint swelling in CIA rats, reduce pannus formation and inflammatory infiltration in the joints. Western blot analysis showed that PAL mainly played a role through the TLR4/NF-κB signaling pathway. CONCLUSION: The results of in vivo and in vitro experiments show that PAL can effectively alleviate the condition of RA, and may be a potential drug for the treatment of RA.


Antirheumatic Agents/therapeutic use , Apoptosis/drug effects , Arthritis, Rheumatoid/drug therapy , Cell Proliferation/drug effects , Diynes/therapeutic use , Fatty Alcohols/therapeutic use , NF-kappa B/metabolism , Signal Transduction/drug effects , Synovial Membrane/cytology , Toll-Like Receptor 4/metabolism , Animals , Blotting, Western , Cell Movement/drug effects , Female , Rats , Rats, Wistar , Synovial Membrane/drug effects , Synovial Membrane/metabolism
15.
Ann Rheum Dis ; 80(12): 1604-1614, 2021 12.
Article En | MEDLINE | ID: mdl-34663597

Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1ß which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.


Arthralgia/metabolism , Arthritis/metabolism , Crystal Arthropathies/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Nociceptors/metabolism , TRPV Cation Channels/genetics , Adult , Animals , Arthralgia/immunology , Arthritis/immunology , Arthritis, Gouty/immunology , Arthritis, Gouty/metabolism , Crystal Arthropathies/immunology , Gout/immunology , Gout/metabolism , Humans , Inflammasomes/immunology , Inflammation , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Male , Mice , Middle Aged , Optical Imaging , Patch-Clamp Techniques , Synovial Membrane/cytology , THP-1 Cells , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Uric Acid
16.
Int Immunopharmacol ; 99: 108010, 2021 Oct.
Article En | MEDLINE | ID: mdl-34358861

OBJECTIVE: Our previous study observed that long non-coding RNA (lncRNA) RP11-83J16.1 promoted rheumatoid arthritis (RA)-fibroblast-like synoviocyte (RA-FLS) proliferation, invasion and inflammation, which was downregulated by triptolide treatment. Therefore, the present study aimed to further investigate the mechanism and interaction between triptolide and lncRNA RP11-83J16.1 in RA treatment in vitro and in vivo. METHODS: RA-FLS was isolated and treated by different concentration of triptolide and lncRNA RP11-83J16.1 overexpression plasmid. Furthermore, collagen-induced arthritis (CIA) rat model was constructed followed by triptolide and lncRNA RP11-83J16.1 overexpression plasmid treatment. RESULTS: Triptolide inhibited RA-FLS viability and lncRNA RP11-83J16.1 expression in a dose-dependent manner. Afterward, triptolide treatment inhibited RA-FLS proliferation, invasion, levels of inflammatory markers (TNF-α, IL-1ß, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and ß-catenin signaling, but promoted apoptosis. However, lncRNA RP11-83J16.1 overexpression weakened the effects of triptolide on regulating RA-FLS cell behaviors, URI1 signaling and ß-catenin signaling. In CIA model, triptolide decreased arthritis score, hyperproliferation of synovial cells, inflammation infiltration of synovial tissue, inflammatory markers (TNF-α, IL-1ß, IL-6, MMP-3, and MMP-9), inactivated lncRNA RP11-83J16.1, URI1 and ß-catenin signaling, but increased cell apoptosis rate of synovial tissue. Nevertheless, lncRNA RP11-83J16.1 curtailed the treatment effect of triptolide in CIA model. CONCLUSION: Triptolide decreases RA-FLS proliferation, invasion, inflammation and presents a therapeutic effect in CIA model via inactivating lncRNA RP11-83J16.1 mediated URI1 and ß-catenin signaling.


Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Diterpenes/pharmacology , Phenanthrenes/pharmacology , Synoviocytes/drug effects , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Diterpenes/therapeutic use , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Fibroblasts/immunology , Fibroblasts/pathology , Humans , Male , Phenanthrenes/therapeutic use , Primary Cell Culture , RNA, Long Noncoding/metabolism , Rats , Repressor Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Synovial Membrane/cytology , Synovial Membrane/drug effects , Synovial Membrane/immunology , Synovial Membrane/pathology , Synoviocytes/immunology , Synoviocytes/pathology , beta Catenin/metabolism
17.
Front Immunol ; 12: 709178, 2021.
Article En | MEDLINE | ID: mdl-34349767

Single-cell RNA sequencing (scRNA-seq) technology can analyze the transcriptome expression level of cells with high-throughput from the single cell level, fully show the heterogeneity of cells, and provide a new way for the study of multicellular biological heterogeneity. Synovitis is the pathological basis of rheumatoid arthritis (RA). Synovial fibroblasts (SFs) and synovial macrophages are the core target cells of RA, which results in the destruction of articular cartilage, as well as bone. Recent scRNA-seq technology has made breakthroughs in the differentiation and development of two types of synovial cells, identification of subsets, functional analysis, and new therapeutic targets, which will bring remarkable changes in RA treatment.


Arthritis, Rheumatoid/pathology , Fibroblasts/physiology , Macrophages/physiology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Synovial Membrane/cytology , Fibroblasts/classification , Humans
18.
Biochem J ; 478(16): 3145-3155, 2021 08 27.
Article En | MEDLINE | ID: mdl-34405859

Autophagy receptor p62/SQSTM1 signals a complex network that links autophagy-lysosomal system to proteasome. Phosphorylation of p62 on Serine 349 (P-Ser349 p62) is involved in a cell protective, antioxidant pathway. We have shown previously that P-Ser349 p62 occurs and is rapidly degraded during human synovial fibroblasts autophagy. In this work we observed that fingolimod (FTY720), used as a medication for multiple sclerosis, induced coordinated expression of p62, P-Ser349 p62 and inhibitory TFEB form, phosphorylated on Serine 211 (P-Ser211 TFEB), in human synovial fibroblasts. These effects were mimicked and potentiated by proteasome inhibitor MG132. In addition, FTY720 induced autophagic flux, LC3B-II up-regulation, Akt phosphorylation inhibition on Serine 473 but down-regulated TFEB, suggesting stalled autophagy. FTY720 decreased cytoplasmic fraction contained TFEB but induced TFEB in nuclear fraction. FTY720-induced P-Ser211 TFEB was mainly found in membrane fraction. Autophagy and VPS34 kinase inhibitor, autophinib, further increased FTY720-induced P-Ser349 p62 but inhibited concomitant expression of P-Ser211 TFEB. These results suggested that P-Ser211 TFEB expression depends on autophagy. Overexpression of GFP tagged TFEB in HEK293 cells showed concomitant expression of its phosphorylated form on Serine 211, that was down-regulated by autophinib. These results suggested that autophagy might be autoregulated through P-Ser211 TFEB as a negative feedback loop. Of interest, overexpression of p62, p62 phosphorylation mimetic (S349E) mutant and phosphorylation deficient mutant (S349A) in HEK293 cells markedly induced P-Ser211 TFEB. These results showed that p62 is involved in regulation of TFEB phosphorylation on Serine 211 but that this involvement does not depend on p62 phosphorylation on Serine 349.


Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fibroblasts/metabolism , Sequestosome-1 Protein/metabolism , Serine/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Blotting, Western , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Fibroblasts/drug effects , Fingolimod Hydrochloride/pharmacology , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Leupeptins/pharmacology , Microscopy, Fluorescence , Mutation , Phosphorylation/drug effects , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Sequestosome-1 Protein/genetics , Serine/genetics , Synovial Membrane/cytology , Synovial Membrane/metabolism
19.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article En | MEDLINE | ID: mdl-34208590

Osteoarthritis (OA) is the most common musculoskeletal disorder causing a great disability and a reduction in the quality of life. In OA, articular chondrocytes (AC) and synovial fibroblasts (SF) release innate-derived immune mediators that initiate and perpetuate inflammation, inducing cartilage extracellular matrix (ECM) degradation. Given the lack of therapies for the treatment of OA, in this study, we explore biomarkers that enable the development of new therapeutical approaches. We analyze the set of secreted proteins in AC and SF co-cultures by stable isotope labeling with amino acids (SILAC). We describe, for the first time, 115 proteins detected in SF-AC co-cultures stimulated by fibronectin fragments (Fn-fs). We also study the role of the vasoactive intestinal peptide (VIP) in this secretome, providing new proteins involved in the main events of OA, confirmed by ELISA and multiplex analyses. VIP decreases proteins involved in the inflammatory process (CHI3L1, PTX3), complement activation (C1r, C3), and cartilage ECM degradation (DCN, CTSB and MMP2), key events in the initiation and progression of OA. Our results support the anti-inflammatory and anti-catabolic properties of VIP in rheumatic diseases and provide potential new targets for OA treatment.


Chondrocytes/metabolism , Fibroblasts/metabolism , Osteoarthritis/metabolism , Proteome , Proteomics , Synovial Membrane/cytology , Vasoactive Intestinal Peptide/metabolism , Biomarkers , Chondrocytes/drug effects , Coculture Techniques , Cytokines/metabolism , Disease Susceptibility , Extracellular Matrix/metabolism , Fibroblasts/drug effects , Humans , Inflammation Mediators/metabolism , Osteoarthritis/etiology , Osteoarthritis/pathology , Proteomics/methods , Vasoactive Intestinal Peptide/pharmacology
20.
Aging (Albany NY) ; 13(13): 17227-17236, 2021 07 01.
Article En | MEDLINE | ID: mdl-34198264

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common types of arthritis. Both are characterized by the infiltration of a number of proinflammatory cytokines into the joint microenvironment. miRNAs play critical roles in the disease processes of arthritic disorders. However, little is known about the effects of miRNAs on critical inflammatory cytokine production with OA and RA progression. Here, we found higher levels of proinflammatory cytokines including interleukin 1 beta (IL-1ß), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in human OA and RA synovial fibroblasts (SFs) compared with normal SFs. Searches of open-source microRNA (miRNA) software determined that miR-let-7c-5p and miR-149-5p interfere with IL-1ß, IL-6 and TNF-α transcription; levels of all three proinflammatory cytokines were lower in human OA and RA patients compared with normal controls. Anti-inflammatory agents dexamethasone, celecoxib and indomethacin reduced proinflammatory cytokine production by promoting the expression of miR-let-7c-5p and miR-149-5p. Similarly, ibuprofen and methotrexate also enhanced miR-let-7c-5p and miR-149-5p expression in human SFs. The evidence suggests that increasing miR-let-7c-5p and miR-149-5p expression is a novel strategy for OA and RA.


Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cytokines/biosynthesis , Cytokines/genetics , Fibroblasts/metabolism , MicroRNAs/genetics , Osteoarthritis/genetics , Osteoarthritis/metabolism , Synovial Membrane/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Fibroblasts/drug effects , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , MicroRNAs/biosynthesis , Synovial Membrane/cytology , Synovial Membrane/drug effects , Tumor Necrosis Factor-alpha
...